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ABSTRACT: Although the synthesis of several bis-
(disilenes) has already been reported, the number of
reported conjugation modes between the Si=Si double
bonds remains limited. Herein, we report the properties of
the stable pentasila-1,4-diene 1, which was obtained from
the reaction of two equivalents of disilenide 4 with
dichlorodimethylsilane. The #(Si=Si)—>n*(Si=Si) ab-
sorption band of 1 is considerably broadened and red-
shifted compared to those of the corresponding mono-
disilene and hexasila-1,5-diene, but blue-shifted relative to
those of typical tetrasila-1,3-dienes. The bathochromic
shift and the broadening of the absorption band in 1
should be attributed to the homoconjugation between
Si=Si double bonds through the SiMe, unit.

onjugation is a key concept in the design of the molecular

architecture of advanced functional materials. In addition
to classic z-conjugation, various other modes of conjugation
such as cross-,' homo-,” and spiroconjugation® afford a rich
diversity of molecular and electronic structures in z-electron
systems. Recently, 7-electron systems involving Si==Si double
bonds (disilenes) have been considered as promising prospects
for advanced functional 7-electron systems, owing to the
inherently narrow HOMO—LUMO gap in disilenes." Even
though several stable compounds containing two or more Si=
Si double bonds have been synthesized so far, modes of
conjugation between the Si=Si double bonds have been
restricted to 7-conjugation between two directly connected
Si=Si double bonds (A in Chart 1),>~* or to spiro-conjugation

Chart 1. Conjugation Modes between Si=Si Double Bonds
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(B), i, a through-space interaction between two perpendic-
ularly arranged double bonds connected by a spiro center.’
Homoconjugation (C), i.e., the orbital overlap of two 7-systems
separated by a nonconjugating group such as CH,” should also
be possible for Si=Si double bonds, considering their similarity
to m-electron systems based on elements of the second row.
Nevertheless, compounds exhibiting such interactions still
remain elusive,'’ except for spiroconjugation (B), which
constitutes a spec1al case of homoconjugation within a
spirocyclic structure.” Significant homoconjugation between
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Si=Si double bonds may thus represent another fundamental
interaction in functional compounds based on Si=Si double
bonds. Herein, we report the synthesis of stable pentasila-1,4-
diene 1, which bears two Si=Si double bonds separated by a
SiMe, group (Chart 2). The red-shifted absorption band of 1

Chart 2. Pentasila-1,4-diene 1, Hexasila-1,5-diene 2, and
Monodisilene 3 (R = SiMe;, Mes = 2,4 6-trimethylphenyl)
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relative to those of hexasila-1,5-diene 2 and monodisilene 3
indicates remarkable interactions between two Si=Si double
bonds via the SiMe, unit, and thus constitutes the first example
of homoconjugation between two Si=Si double bonds.
Air-sensitive red crystals of 1 were obtained in 18% yield
from the reaction of two equivalents of disilenide 4'" with
dichlorodimethylsilane in THF (Scheme 1). Scheschkewitz et

Scheme 1. Synthesis of Disilenes 1-3
Me;SiCl; (0.5 eq)
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al. have reported that the reaction of triaryldisilenide D with
silicon tetrachloride provided tricyclic siliconoid E instead of
3,3-dichloropentasila-1,4-diene F.'»2 Conversely, the reaction
with dichlorodimethylsilane affords chlorosilyldisilene G, which
undergoes an isomerization in THF to furnish cyclotrisilane H
(Scheme 2)."* In our case, however, a similar isomerization to
generate a cyclotrisilane was not observed, which is probably
due to the steric bulk of the terminal R, groups (R", = 1,1,4,4-
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Scheme 2. Related Reactions of Triaryldisilenide D
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tetrakis(trimethylsilyl )butane-1,4-diyl). Disilenide 4 can also be
used to synthesize 2 (70%) and 3 (90%), which were obtained
as orange and yellow crystals, respectively.'” The molecular
structures of 1-3 were unequivocally determined by a
combination of multinuclear NMR spectroscopy, mass
spectrometry, and single-crystal X-ray diffraction (XRD)
analysis.

The molecular structures of 1—3, derived from XRD
analyses, are shown in Figures 1 and S26. The five silicon
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Figure 1. ORTEP representations of (a) 1 and (b) 2 (atomic
displacement parameters set at 50% probability; hydrogen atoms
omitted for clarity). Selected bond lengths (A) and angles (deg) for 1:
Si1—Si2 2.2089(6), Si2—Si3 2.3710(6), Si3—Si4 2.3711(6), Si4—Sis
2.2032(6), Si1—Si2—Si3 128.42(2), Si2—Si3—Si4 106.57(2), Si3—Si4—
Sis 132.07(2), Sil—Si2—Si3—Si4 —99.06(3), Si2—Si3—Si4—Si5s
167.34(3). Selected bond lengths (A) and angles (deg) for 2: Sil—
Si2 2.1918(12), Si2—Si3 2.3702(12), Si3—Si3* 2.3753(16), Sil—Si2—
Si3 128.55(5), Si2—Si3—Si3* 108.80(6), Sil—Si2—Si3—Si3*
177.06(6), Si2—Si3—Si3*—Si2* 180.00.

atoms of the silicon backbone in 1 adopt an anticlinal-
antiperiplanar conformation with dihedral Sil—Si2—Si3—Si4
and Si2—Si3—Si4—Si$ angles of —99.06(3)° and 167.34(3)°,"
respectively. In contrast, the silicon backbone in 2 adopts an all-
anti-conformation. The Si=Si double bond distances in 1
[Si1=Si2: 2.2089(6) A; and Si4=SiS: 2.2032(6) A] are
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slightly longer than those in 2 [2.1918(12) A] and 3
[2.1794(6) A], and comparable to those of typical disilenes
(2.16—2.25 A)." The two Si=Si double bonds in 1 are in close
spatial proximity with respect to each other, which is evident
from the distance between neighboring three-coordinate silicon
atoms [Si2--Si4 = 3.8013(7) A]. This distance is much shorter
than those in spiropentasiladiene B [Chart 1, R = Si(t
BuMe,Si),, 4.322(3) A]® and 2 [Si2--Si2’ = 5.947(1) A], as
well as the sum of the van der Waals radii (4.2 A).lé The two
Si=Si double bonds in 1 are twisted relative to each other, i.e.,
an angle of 72° was observed between the 7-orbital axis vectors
(POAVs)'” on Si2 and Si4 (Figure $29). The mesityl rings in
1-3 are aligned almost perpendicularly with respect to the Si=
Si double bonds (84—88°)."*

The NMR spectra of 1 in C¢Dg showed two equivalent
disilene moieties (R™,Si=SiMes) on the NMR time scale, as
evident from the relative intensities of the '"H NMR signals.
This result suggests facile rotation around the Si(Mes)—SiMe,
bonds in 1 in solution. The silicon backbone in 1 afforded three
Si resonance signals at 166.1 (R",Si=), 43.0 (=SiMes—), and
—16.4 (SiMe,) ppm.

The UV—vis absorption spectra of 1 in hexane revealed
remarkable interactions between the two Si=Si double bonds.
In the visible region, two absorption bands were observed at
Awps = 445 nm and A, = 368 nm (Figure 2). The longest-
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Figure 2. UV—vis absorption spectra of 1 (red), 2 (blue), and 3
(black) in hexane.

wavelength absorption band of 1 at A, = 445 nm is thereby
considerably red-shifted relative to those of monodisilene 3
(Amax = 401 nm) and bis(disilene) 2 (4, = ~ 424 nm),
whereas it is blue-shifted with respect to those of typical
tetrasila-1,3-dienes (4, = 510—531 nm).” The longest-
wavelength absorption band of 1 is moreover broadened and
tails up to 550 nm, suggesting the contribution of several
transitions from the Si==Si double bonds. This spectral feature
suggests homoconjugation between the two Si=Si double
bonds in 1. Replacement of the SiMe, unit in 1 with (SiMe,),
in 2 induces a blue-shift of this absorption band, which is
indicative of reduced interactions between the Si=Si double
bonds in 2.

The nature of the absorption bands of 1 was also examined
by theoretical calculations on 1—3 (for details, see SI).
Structures of 1—3 were optimized at the B3PW91-D3/6-
31G(d) level of theory (1,,—3,,) and are in good agreement
with those obtained from the XRD analysis (for details, see SI).
The band positions and intensities determined by TD-DFT
calculations on the optimized structures also fitted well with
those obtained from the experimental spectra (Figure 3a and
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Figure 3. (a) Experimental UV—vis absorption spectrum (black) and
calculated band positions (red) of 1. i, m(Si=Si)—x*(Si=Si)
transition; ii, 7(Si=Si)—z*(Mes) transition. (b) LUMO and
LUMO+1 of 1, (isosurface value = 0.03). Hydrogen atoms are
omitted for clarity.

Figure S32), suggesting that the structures of 1-3 in the
crystalline state are also the predominant ones in solution. The
frontier orbitals of 1,, are two split 7%(Si=Si) orbitals
(LUMO and LUMO+1; Figure 3b) and two virtually
degenerate 7(Si=Si) orbitals (HOMO and HOMO-1; Figure
S33). The splitting of the #*(Si=Si) orbitals should result
from the effective interactions between the two #*(Si=Si)
orbitals via the o*(Si—C) orbitals (Figure 3b). The
degeneration of the 7(Si=Si) orbitals is probably due to the
large energy difference between the 7(Si=S$i) and the ¢*(Si—
C) orbitals relative to that between the 7#*(Si=Si) and the
6*(Si—C) orbitals. Judging from the comparison between the
experimentally observed and theoretically calculated UV—vis
spectra, the broad absorption band at A, = 445 nm (1) was
assigned to the overlap of four 7—7* transitions of the Si=Si
double bonds (assignment i in Figure 3a), whereas the band at
Aqps = 368 nm was assigned to an intramolecular charge-transfer
(ICT) transition from the z(Si=Si) to the #*(mesityl) orbital
(assignment ii)."” These features contrast sharply to those of
2, The frontier orbitals of 2, are degenerated (Si=Si) and
7*(Si=Si) orbitals, which indicates the absence of significant
interactions between the two remote Si=Si double bonds
(Figure $33).”" The absorption band of 2 was assigned to a
mixture of the 7— 7* transition of the Si=Si double bonds, the
ICT transition from the disilene to the mesityl group, and the
7(Si=Si)—0*(Si—C) transition.'’ Based on these results, the
remarkably broadened and red-shifted absorption band
observed for 1 should be attributed to effective interactions
between the two n*(Si=Si) orbitals via the o6*(Si—C)
orbitals, ie, a homoconjugation between the two Si=Si
double bonds (Figure 3b).**

In conclusion, we synthesized pentasila-1,4-diene 1, which
represents the first example for homoconjugation between Si=
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Si double bonds via a SiMe, group. The longest-wavelength
absorption band of 1 is broadened and red-shifted relative to
those of monodisilene 3 and hexasila-1,5-diene 2, which is due
to the homoconjugation between the two Si=Si double bonds.
However, this absorption band of 1 is also blue-shifted relative
to those of typical tetrasila-1,3-dienes, indicating that although
homoconjugation between the two Si==Si double bonds via the
SiMe, moiety is weaker than direct 7z-conjugation, it is still
significant. Thus, homoconjugation should henceforth be
considered a key interaction in functional compounds based
on Si=Si double bonds.
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